On the Weak Continuity of Elliptic Operators and Applications to Potential Theory
نویسندگان
چکیده
In this paper, we establish weak continuity results for quasilinear elliptic and subelliptic operators of divergence form, acting on corresponding classes of subharmonic functions. These results are analogous to our earlier results for fully nonlinear k-Hessian operators. From the weak continuity, we derive various potential theoretic results including capacity estimates, potential estimates and the Wiener criterion for regular boundary points. Our methods make substantial use of Harnack inequalities for solutions. Running title: Weak continuity of elliptic operators
منابع مشابه
Asymptotic distribution of eigenvalues of the elliptic operator system
Since the theory of spectral properties of non-self-accession differential operators on Sobolev spaces is an important field in mathematics, therefore, different techniques are used to study them. In this paper, two types of non-self-accession differential operators on Sobolev spaces are considered and their spectral properties are investigated with two different and new techniques.
متن کاملA Topological and Geometric Approach to Fixed Points Results for Sum of Operators and Applications
In this paper we establish a fixed point result of Krasnoselskii type for the sum A+B, where A and B are continuous maps acting on locally convex spaces. Our results extend previous ones. We apply such results to obtain strong solutions for some quasi-linear elliptic equations with lack of compactness. We also provide an application to the existence and regularity theory of solutions to a nonli...
متن کاملOn genuine Lupac{s}-Beta operators and modulus of continuity
In the present article we discuss approximation properties of genuine Lupac{s}-Beta operators of integral type. We establish quantitative asymptotic formulae and a direct estimate in terms of Ditzian-Totik modulus of continuity. Finally we mention results on the weighted modulus of continuity for the genuine operators.
متن کاملOn intermediate value theorem in ordered Banach spaces for noncompact and discontinuous mappings
In this paper, a vector version of the intermediate value theorem is established. The main theorem of this article can be considered as an improvement of the main results have been appeared in [textit{On fixed point theorems for monotone increasing vector valued mappings via scalarizing}, Positivity, 19 (2) (2015) 333-340] with containing the uniqueness, convergent of each iteration to the fixe...
متن کامل